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Abstract

In this paper, we prove some rigidity theorems for closed hypersurfaces in a unit sphere.
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1. Introduction

Let Mn be ann-dimensional closed hypersurface in a unit sphereSn+1(1) of dimension
n + 1 and denote byS the squared norm of the second fundamental form ofMn. Many
metric and topological rigidity theorems aboutMn have been obtained. Simons[19], Chern
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et al.[10] and Lawson[11] proved that ifMn is minimal and ifS ≤ n thenMn is either to-
tally geodesic or a Clifford minimal hypersurface. Further results about rigidity of minimal
hypersurfaces inSn+1(1) can be found, e.g., in[15–17], etc. As a natural generalization,
the rigidity phenomenon for hypersurfaces inSn+1(1) with constant mean curvature has
also been studied. It has been proven by Nomizu and Smyth[13] that if Mn has constant
mean curvature and non-negative sectional curvature thenMn is either totally umbilic or
a Riemannian productSk(c1) × Sn−k(c2),1 ≤ k ≤ n − 1, whereSk(c) denotes the sphere
of radiusc. Alencar and do Carmo[2] have shown that ifMn has constant mean curvature
H and if S ≤ nH2 + C(H, n), whereC(H, n) is a constant that depends only onH and
n, thenMn is either totally umbilic or a Riemannian productS1(

√
1 − c2) × Sn−1(c) with

c2 ≤ (n − 1/n). On the other hand, some rigidity theorems for hypersurfaces with constant
scalar curvature have been proven. It has been shown by Cheng and Yau that ifMn has non-
negative sectional curvature and constant scalar curvaturen(n − 1)r with r ≥ 1, thenMn

is isometric to either a totally umbilic hypersurface or a Riemannian productSk(c1) ×
Sn−k(c2),1 ≤ k ≤ n − 1 [9]. Li [12] proved that ifMn has constant scalar curvature
n(n − 1)r with r ≥ 1 and ifS ≤ (n − 1)(n(r − 1) + 2)/(n − 2) + (n − 2)/(n(r − 1) + 2),
then Mn is isometric to either a totally umbilic hypersurface or the Riemannian prod-
uct S1(

√
1 − c2) × Sn−1(c) with c2 ≤ (n − 2)/(nr). Recently, Alencar et al.[3] obtained

a gap theorem for closed hypersurfaces with constant scalar curvaturen(n − 1) in a unit
sphere.

In this paper, we prove a rigidity theorem for the Riemannian productS1(
√

1 − c2) ×
Sn−1(c) with c2 ≤ (n − 1/n) without the constancy condition on the mean curvature or the
scalar curvature. Namely, we have the following theorem.

Theorem 1.1. LetMn be an n-dimensional closed hypersurface inSn+1(1). Denote by
S and H the squared norm of the second fundamental form and the mean curvature of
Mn, respectively. Assume that the fundamental groupπ1(Mn) of Mn is infinite and that
S ≤ S(n,H), where

S(n,H) = n + n3H2

2(n − 1)
− n(n − 2)|H |

2(n − 1)

√
n2H2 + 4(n − 1). (1.1)

ThenS is constant,S = S(n,H)andM is isometric to aRiemannianproductS1(
√

1 − c2) ×
Sn−1(c) with c2 ≤ (n − 1)/n.

Montiel and Ros[14] have proven that an embedded closed hypersurface in a half-sphere
with constantr-mean curvature for somer ∈ {1, . . . , n}, is a totally umbilical hypersphere.
In the second part of this paper, we give another characterization for the totally umbilical
hypersphere.

Theorem 1.2. LetMn be an n-dimensional closed orientable hypersurface inSn+1(1).
Assume that the squared norm S of the second fundamental form ofMn is constant and that
one of the following conditions holds:

(a) The mean curvature H ofMn satisfiesH2 ≥ {(n − 1)/n2}S onMn.
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(b) The Ricci curvatures ofMn are bounded from below byn − 1.

ThenMn is a totally umbilical hypersphere.

2. Preliminaries

Let Mn be ann-dimensional Riemannian manifold. We choose a local frame of or-
thonormal vector fields{e1, . . . , en} onMn and let{ω1, . . . , ωn} be the dual coframe. The
connection forms{ωij} of Mn are characterized by the structure equations:

dωi =
∑
j

ωij ∧ ωj, ωij + ωji = 0, (2.1)

dωij =
∑
k

ωik ∧ ωkj − 1

2

∑
k,l

Rijklωk ∧ ωl, (2.2)

whereRijkl are the components of the curvature tensor ofMn.
For anyC2-functionf defined onMn, we define its gradient and Hessian by the following

formulas

df =
∑

i

fiωi, (2.3)

∑
j

fijωj = dfi +
∑
j

fjωji. (2.4)

The Laplacian off is given by�f =∑i fii. Let φ =∑i,j φijωi ⊗ ωj be a symmetric
tensor defined onMn. The covariant derivative ofφ is defined by∑

k

φijkωk = dφij +
∑
k

φkjωki +
∑
k

φikωkj. (2.5)

Let |φ|2 =∑i,j φ2
ij and trφ =∑i φii. Choose a frame field{ω1, . . . , ωn}so thatφij = λiδij.

If φ satisfies the “Codazzi equation”

φijk = φikj,

then we have[9]

1

2
�|φ|2 =

∑
i,j,k

φ2
ijk +

∑
i

λi(tr φ)ii + 1

2

∑
i,j

Rijij(λi − λj)
2. (2.6)

The Weyl curvature tensorW = (Wijkl) of Mn is defined by

Wijkl = Rijkl − 1

n − 2
(Rikδjl − Rilδjk + Rjlδik − Rjkδil)

+ R

(n − 1)(n − 2)
(δikδjl − δilδjk), (2.7)
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whereRij andRare the components of Ricci curvature tensor and the scalar curvature of
Mn, respectively. The Beck tensorB = (Bijk) of Mn is given by

Bijk = 1

n − 2
(Rijk − Rikj) − 1

2(n − 1)(n − 2)
(δijRk − δikRj), (2.8)

whereRijk are the components of the covariant derivative of the Ricci curvature tensor of
Mn andRk = ekR.

The following fact is needed in the proof ofTheorem 1.1.

Lemma 2.1. [1] If the Ricci curvature of a compact Riemannina manifold is non-negative
and positive at a point, then the manifold carries a metric of positive Ricci curvature.

Mn is said to be locally conformally flat if, for eachx ∈ Mn, there exists a conformal
diffeomorphism of a neighborhood ofx onto an open set of the Euclideann-spaceRn. When
n ≥ 4, Mn is locally conformally flat if and only ifWijkl = 0, and thatBijkl = 0 onMn in
this case. Whenn = 3, we always haveWijkl = 0 onM3 andM3 is a locally conformally
flat Riemannian manifold if and only ifBijk = 0. Thus, ifMn is a locally conformally flat
Riemannian manifold, then

Rijkl = 1

n − 2
(Rikδjl − Rilδjk + Rjlδik − Rjkδil) − R

(n − 1)(n − 2)
(δikδjl − δilδjk),

(2.9)

and

Rijk − 1

2(n − 1)
δijRk = Rikj − 1

2(n − 1)
δikRj. (2.10)

Let Mn be a hypersurface in a unit (n + 1)-dimensional sphereSn+1(1) and denote by
h =∑i,j hijωi ⊗ ωj the second fundamental form ofMn. The squared normS of h and
the mean curvatureH of Mn are given by

S =
∑
i,j

h2
ij, nH =

∑
i

hii,

respectively. The Gauss equation ofMn can be written as

Rijkl = δikδjl − δilδjk + (hikhjl − hilhjk). (2.11)

The Ricci tensor and the scalar curvatureR of Mn are then given by

Rij = (n − 1)δij + nHhij −
∑
k

hikhkj, (2.12)

R = n(n − 1) + n2H2 − S, (2.13)

respectively. The covariant derivativehijk of h satisfieshijk = hikj. The eigenvalues
λ1, . . . , λn of (hij) are the principal curvatures ofMn.
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3. Proofs of the results

Proof of Theorem 1.1. Assume that{e1, . . . , en} diagonalizes the second fundamental
form of Mn so that

∑
i,j hijωi ⊗ ωj =∑i λiωi ⊗ ωi. In this case, we have

Rijkl = (1 + λiλj)(δikδjl − δilδjk), (3.1)

Rij = 0, i �= j, (3.2)

and

Rii = n − 1 + nHλi − λ2
i , i = 1, . . . , n. (3.3)

For any fixedj ∈ {1, . . . , n}, since

(nH − λj)
2 =


∑

j �=k

λk




2

≤ (n − 1)
∑
k �=j

λ2
k = (n − 1)(S − λ2

j ),

we have

n2H2 − (n − 1)S + nλ2
j − 2nHλj ≤ 0. (3.4)

It is easy to see from

∑
i

(λi − H) = 0,
∑

i

(λi − H)2 = S − nH2,

that

(λj − H)2 ≤ n − 1

n
(S − nH2),

which, combining with (3.4), implies that

0 ≥ n(λ2
j − nHλj) + (n − 2)n(λj − H)H + 2(n − 1)nH2 − (n − 1)S

≥ n(λ2
j − nHλj) − (n − 2)n|H |

√
n − 1

n
(S − nH2) + 2(n − 1)nH2 − (n − 1)S.

(3.5)

It then follows from(3.3) that

Rjj ≥ (n − 1) − (n − 2)|H |
√

n − 1

n
(S − nH2) + 2(n − 1)H2 − (n − 1)

n
S

= n − 1

n

(
n + 2nH2 − S − (n − 2)|H | ·

√
n

n − 1
·
√

S − nH2

)

= n − 1

n

(√
S − nH2 + 1

2

√
n

n − 1

(
(n − 2)|H | +

√
n2H2 + 4(n − 1)

))
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×
(

−
√

S − nH2 + 1

2

√
n

n − 1

(
−(n − 2)|H | +

√
n2H2 + 4(n − 1)

))
.

(3.6)

Observe that our conditionS ≤ S(n,H) is equivalent to

S − nH2 ≤
(

1

2

√
n

n − 1

(
−(n − 2)|H | +

√
n2H2 + 4(n − 1)

))2

,

that is

−
√

S − nH2 + 1

2

√
n

n − 1

(
−(n − 2)|H | +

√
n2H2 + 4(n − 1)

)
≥ 0.

Thus

Rjj ≥ 0,∀j,

which, combining with(3.2), implies thatMn has non-negative Ricci curvature. Since
our Mn has infinite fundamental group, we conclude from Bonnet–Myer’s theorem[7]
andLemma 2.1that ∀p ∈ Mn, there exists a unit vectoru ∈ TpM

n, such that the Ricci
curvature Ric ofMn satisfies Ric(u, u) = 0. Note that Ric attains its maximum and minimum
in the principal directions. We can assume without loss of generality that at any fixed
point x ∈ Mn, Rnn = 0. Thus, whenn = j, at the pointx, the inequality(3.5) should
be an equality andS(x) = S(n,H)(x), which in turn implies that whenn = j, the above
inequalities should take equality sign atx. Consequently, we know thatλ1(x) = · · · =
λn−1(x). Sincex ∈ Mn is arbitrary, one then deduces that ourMn has at most two distinct
principal curvatures and, whenMn has exactly two distinct principal curvatures, one of these
two distinct principal curvatures should be simple. Let us assume thatλ1 = · · · = λn−1 = λ

andλn = µonMn. SinceRii ≥ 0 and one ofR11, . . . , Rnn is zero, we deduce from(3.3)that
1 + λµ = 0. Therefore, we conclude thatMn has exactly two distinct principal curvatures
one of which is simple andS = S(n,H) holds onM. We want to show thatλ and µ

are constant functions onM. Notice that ourMn is a closed manifold with non-negative
Ricci curvature. It is well-known that[18, p. 220] the Riemannian universal covering space
M̃n of Mn can be decomposed as̄Mn−s × Rs for somes ∈ {0,1, . . . , n}, whereM̄n−s is
a closed simply connected (n − s)-dimensional Riemannina manifold with non-negative
Ricci curvature andRs is thes-dimensional Euclidean space with its standard flat metric.
The infinity of π1(Mn) implies thatM̄n−s × Rs is non-compact and so we haves ≥ 1.
Sinceλ1 = · · · = λn−1 = λ, λn = µ and 1+ λµ = 0 onMn, we know from(3.1) that if
u =∑n

i=1 aiei, v =∑n
j=1 bjej ∈ TpM

n with |u| = |v| = 1, 〈u, v〉 = 0, then the sectional
curvatureK(u ∧ v) of the plane spanned byu andv is given by
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K(u ∧ v) =
∑
i,j,k,l

aibjakblRijkl =
∑
i,j,k,l

aibjakbl(1 + λiλj)(δikδjl − δilδjk)

= 1 +
(∑

i

λia
2
i

)∑
j

λjb
2
j


−

(∑
i

λiaibi

)2

= 1 +
(
λ(1 − a2

n) + µa2
n

)(
λ(1 − b2

n) + µb2
n

)
− (λ(−anbn) + µanbn)2

= (1 + λ2)(1 − a2
n − b2

n). � (3.7)

Lemma 3.1. A vectoru ∈ TpM
n with |u| = 1 satisfies the following condition

(∗) if v ∈ TpM
n with 〈u, v〉 = 0, |v| = 1, thenK(u ∧ v) = 0,

if and only ifu = ±en(p).

Proof of Lemma 3.1. If u = ±en(p) andv satisfies|v| = 1, 〈u, v〉 = 0, then we can write

v =
n−1∑
i=1

aiei(p),
n−1∑
i=1

a2
i = 1.

Thus

K(u ∧ v) =
∑
i,j

aiajRninj =
∑
i,j

aiaj(1 + λnλi)(δnnδij − δniδnj)

=
∑

i

(1 + µλi)a
2
i − a2

n(1 + µ2) = 0. (3.8)

On the other hand, if (∗) is satisfied and suppose by contradiction that

u = aen(p) + w, (3.9)

where〈w, en(p)〉 = 0, w �= 0. Letw =∑n−1
i=1 ciei(p) and take a vectorz =∑n−1

i=1 diei(p) ∈
TpM

n satisfying|z| = 1, 〈z,w〉 = 0. Then〈z, u〉 = 0 and so we have from(3.7) that

K(u ∧ z) = (1 + λ2)(1 − a2) = (1 + λ2)|w|2 > 0,

which contradicts to (∗). Thusu is parallel toen(p), since|u| = 1, we know thatu = ±en(p).
Lemma 3.1is proved. �

Let us go on the proof ofTheorem 1.1. SinceM andM̄n−s × Rs are locally isometric,
it follows from Lemma 3.1that s = 1. We claim thatM̄n−1 has constant sectional
curvature and so is isometric to a Euclidean (n − 1)-sphere. In order to see this, let us
assume first thatn ≥ 4. Let π : M̄n−1 × R → M be the natural projection; thenπ is a
local isometry. For anyx ∈ M̄n−1, take an orthonormal base{f1, . . . , fn−1} of TxM̄

n−1.
Since T(x,0)(M̄n−1 × R)=TxM̄

n−1 × T0R, we know that {(f1,0), . . . , (fn−1,0), (0,1)}
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is an orthonormal base ofT(x,0)(M̄n−1 × R), where 0 is the zero-vector ofTxM̄
n−1.

Observe that for anyv ∈ T(x,0)(M̄n−1 × R) with 〈v, (0,1)〉 = 0, |v| = 1, it holds
K̃((0,1) ∧ v) = 0, whereK̃ denotes the sectional curvature ofM̄n−1 × R. It follows that
K(dπ(x,0)((0,1)) ∧ z) = 0, ∀z ∈ Tπ(x,0)M

n with |z| = 1 and〈dπ(x,0)((0,1)), z〉 = 0. Thus
we know fromLemma 3.1that dπ(x,0)((0,1)) = ±en(y) and so for anyj = 1, . . . , n − 1,
dπ(x,0)((fj,0)) ∈ span{e1(y), . . . , en−1(y)}, where y = π(x,0). Hence, K̃((fi,0) ∧
(fj,0)) = K(dπ(x,0)((fi,0)) ∧ dπ(x,0)((fj,0))) = 1 + λ2(y), i �= j ∈ {1, . . . , n − 1},
which shows that for anyx ∈ M̄n−1 and any two-dimensional planeP ⊂ TxM̄

n−1, the
sectional curvaturēK(P) of M̄n−1 on P must satisfyK̄(P) = K̃(P) = g(x) > 0, where
g(x) = 1 + λ2(π(x,0)) is a function onM̄n−1. Thus, since dim(̄Mn−1) ≥ 3, we know from
the well-known Schur Lemma[4, p. 106] thatM̄n−1 has constant sectional curvature.

Consider now the case thatn = 3. Let us first show that(2.10) is satisfied and soM3

is a locally conformally flat manifold. In fact, sincen = 3, we get by taking the covariant
derivatives of(2.12)that

Rijk = 3Hkhij + 3Hhijk −
∑

l

(hilkhlj + hilhljk). (3.10)

Also, one has from(2.13)that

Rk = 18HHk − Sk. (3.11)

Hence

Bijk = Rijk − Rikj − 1

4
(δijRk − δikRj)

= 3Hkhij − 3Hjhik +
∑

l

(hiljhlk − hilkhlj)

− 1

4

(
δij(18HHk − Sk) − δik(18HHj − Sj)

)
.

Fromhij = λiδij, we have

Sk = 2
∑
l,m

hlmhlmk = 2
∑

l

λlhllk.

Thus

Bijk =3Hk

(
λi − 3

2
H

)
δij − 3Hj

(
λi − 3

2
H

)
δik + hikj(λk − λj) + 1

4
(δijSk − δikSj)

= 3(Hkδij − Hjδik)

(
λi − 3

2
H

)
+ hikj(λk − λj) + 1

2

∑
l

(δijhllk − δikhllj)λl.

(3.12)
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Takinghlm = λlδlm in the equality

dhij +
∑

l

(hljωli + hilωlj) =
∑

l

hijlωl, (3.13)

one easily gets

hijk = δijekλi + (λi − λj)ωij(ek), (3.14)

and so we have

hiik = ekλi. (3.15)

Sincehijk = hikj, we know from(3.14)that if i, j, k are all distinct, then

(λi − λj)ωij(ek) = (λi − λk)ωik(ej). (3.16)

Sinceλ1 = λ2 = λ, λ3 = µ, we conclude that wheni, j, k are all distinct

Bijk = (λk − λj)hikj = (λk − λj)(λi − λk)ωik(ej)= (λk − λj)(λi − λj)ωij(ek) = 0.

(3.17)

It is trivial to see from(3.12)thatBiii = 0. LetA be the Weingarten operator defined by the
second fundamental form, that is, for anyp ∈ M and allX, Y ∈ TpM, A : TpM → TpM,
〈AX, Y〉 = h(X, Y ). Set

Dp(λ) = {X ∈ TpM : AX = λpX}

and letD(λ) be the assignment ofDp(λ) to each pointp ∈ M. Since the multiplicity of
the principal curvatureλ is greater than one, it follows from[15] thatD(λ) is a completely
integrable distribution onM and thatλ is constant on each leaf ofD(λ). Thus we have
e1λ = e2λ = 0. If i �= k, we have from(3.12) and (3.15)that

Biik = 3Hk

(
λi − 3

2
H

)
+ hiik(λk − λi) + 1

2

∑
l

hllkλl

= (2ekλ + ekµ)

(
λi − λ − 1

2
µ

)
+ (ekλi)(λk − λi) + 1

2

∑
l

hllkλl. (3.18)

Thus

B113 = B223 = (2e3λ + e3µ)

(
−1

2
µ

)
+ (e3λ)(µ − λ) + (e3λ)λ + 1

2
(e3µ)µ = 0,

B331 = e1µ
(µ

2
− λ
)

+ (e1µ)(λ − µ) + 1

2
(e1µ)µ = 0.

Similarly, we have

B332 = 0, Bikk = Biki = 0, i �= k.
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Therefore,M3 is locally conformally flat and sõM3 is also locally conformally flat. Recall
that M̃3 = M̄2 × R, whereM̄2 has non-negative Gaussian curvatureκ. We shall use the
same notationsRijkl andRij, etc. to denote the components of the curvature tensor and the
Ricci curvature tensor, etc. of̃M3, respectively. Take an orthonormal local frame{v1, v2, v3}
of M̃3 such thatv1 andv2 are tangent tōM2. SinceM̃3 is a product, one can see easily that

R11 = R22 = R1212+ R1313 = R1212 = κ,

R12 = R13 = R23 = R33 = 0, R = 2κ.

Takingi = j = 1, k = 2 in the equality (2.10), we get

R112 − R121 = 1

4
R2.

From the definition, we have

R121 = (dR12)(v1) +
3∑

l=1

Rl2ωl1(v1) +
3∑

l=1

R1lωl2(v1) = 0,

R112 = (dR11)(v2) +
3∑

l=1

Rl1ωl1(v2) +
3∑

l=1

Rl2ωl2(v2) = v2R11 = v2κ.

Therefore,

v2κ = 1

2
v2κ,

and so

v2κ = 0.

Similarly, we havev1κ = 0. Thusκ is a constant function. Hence, for anyn ≥ 3, M̄n−1

is a Euclidean sphere. Consequently ourMn has constant scalar curvature. But the scalar
curvature ofMn is given by

r =
∑

i

Rii = (n − 1)(n − 2)(1+ λ2).

Henceλ is a constant and soµ = −1/λ is also constant. That is,Mn is an isoparametric
hypersurface inSn+1(1) with two distinct principal curvatures one of which is simple.
From the work of Cartan[6], we conclude thatMn = S1(

√
1 − c2) × Sn−1(c) for some

c ∈ (0,1). Since the principal curvatures ofS1(
√

1 − c2) × Sn−1(c) areλ1 = · · · = λn−1 =
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√
1/(c2 − 1), λn = −

√
c2/(1 − c2) andS = S(n,H), we know thatc2 ≤ (n − 1/n). This

completes the proof ofTheorem 1.1.
Before provingTheorem 1.2, we recall an algebraic fact.

Lemma 3.2. [8] Letx1, . . . , xn ben(≥)2 real numbers satisfying the inequality(
∑

i xi)2 ≥
(n − 1)

∑
i x

2
i . Then for any distincti, j,1 ≤ i < j ≤ n, we havexixj ≥ 0.

Proof of Theorem 1.2. Leth =∑n
i,j=1 hijωi ⊗ ωj be the second fundamental form ofMn

and assume thathij = λiδij, whereλi, i = 1, . . . , n are the principal curvatures ofMn. It
follows from the Gauss equation that for anyi �= j

Rijij = 1 + λiλj, (3.19)

Let |h|2 =∑n
i,j=1 h2

ij =∑i=1 λ2
i and trh =∑n

i=1 λi. Since|h|2 is constant, we have
from (2.6) that

0 =
n∑

i,j,k=1

h2
ijk +

n∑
i=1

λi(tr h)ii + 1

2

n∑
i,j=1

Rijij(λi − λj)
2. (3.20)

Consider first the case thatH2 ≥ {(n − 1)/n2}S. In this case, we know fromLemma 2.1
thatλiλj ≥ 0, ∀i �= j. Thus one finds from(3.19)that the sectional curvatures ofMn are
bounded from below by 1. It then follows fromTheorem 1.1in [5] that eitherMn is totally
geodesic orMn is the boundary of a convex body in an open half-sphere, which implies
that the second fundamental form ofMn is always semi-positive definite if we choose the
unit normal vector field ofMn properly. Therefore, we can assume thatλi ≥ 0 on Mn,
∀i = 1, . . . , n.

Take a pointp ∈ Mn such that

(tr h)(p) = min
x∈Mn

(tr h)(x).

Then we have from the maximal principle that

(trh)ii(p) ≥ 0, i = 1, . . . , n, (3.21)

which, combining with(3.20), gives

0 ≥ 1

2

∑
i,j

(λi − λj)
2(p),

and so

λ1(p) = · · · = λn(p). (3.22)

Now for anyq ∈ Mn, we have fromS(q) = S(p) and(3.22)that
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∑
i,j

(λi(q) − λj(q))2 = 2n
∑

i

(λi(q))2 − 2

(
n∑
i

λi(q)

)2

≤ 2n
n∑
i

(λi(p))2 − 2

(
n∑
i

λi(p)

)2

= 0. (3.23)

ThusMn is totally umbilical. Assume now that the Ricci curvature ofMn is bounded
from below byn − 1. Then we have from Gauss equation that(

n∑
i=1

λi

)
λj − λ2

j ≥ 0, j = 1, . . . , n,onMn. (3.24)

Suppose without loss of generality thatλ1 ≥ λ2 ≥ · · · ≥ λn. We claim that

λiλj ≥ 0,∀1 ≤ i, j ≤ n,onMn, (3.25)

which, combining with the above arguments above, will imply thatMn is totally umbilical.
Let us verify that for anyp ∈ Mn, there holds either

λi(p) ≥ 0, i = 1, . . . , n,

or

λi(p) ≤ 0, i = 1, . . . , n,

and so(3.25)holds. We shall prove this fact by contradiction. Thus suppose that there exists
aq ∈ Mn such that

λ1(q) > 0 and λn(q) < 0.

If
∑n

i=1 λi(q) ≥ 0, then we have

n−1∑
i=1

λi(q) ≥ −λn(q) > 0.

Thus

(
n∑

i=1

λi(q)

)
λn(q) − λ2

n(q) =
(

n−1∑
i=1

λi(q)

)
λn(q) < 0,
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which contradicts to(3.24). On the other hand, if
∑n

i=1 λi(q) < 0, then

n∑
i=2

λi(q) < −λ1(q) < 0,

which gives

(
n∑

i=1

λi(q)

)
λ1(q) − λ2

1(q) =
(

n∑
i=2

λi(q)

)
λ1(q) < 0,

contradicting to(3.24)again. This completes the proof ofTheorem 1.2. �

Acknowledgement

The authors would like to thank the referee for the encouragements and the careful
reading of the manuscript.

References

[1] T. Aubin, Some nonlinear problems in Riemannian geometry, Springer Monographs in Mathematics,
Springer-Verlag, Berlin, 1998.

[2] H. Alencar, M. do Carmo, Hypersurfaces with constant mean curvature in spheres, Proc. Am. Math. Soc.
120 (1994) 1223–1229.

[3] H. Alencar, M. do Carmo, W. Santos, A gap theorem for hypersurfaces of the sphere with constant scalar
curvature one, Comment. Math. Helv. 77 (2002) 549–562.

[4] M. do Carmo, Riemannian Geometry, Birkhäuser, Boston, MA, 1992.
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