Rigidity theorems for closed hypersurfaces in a unit sphere ${ }^{\text {is }}$

Qiaoling Wang*, Changyu Xia
Departamento de Matemática-IE, Universidade de Brasília, Campus Universitário, 70910-900 Brasília, DF, Brasil

Received 15 July 2004; received in revised form 6 December 2004; accepted 13 December 2004

Abstract

In this paper, we prove some rigidity theorems for closed hypersurfaces in a unit sphere. © 2004 Elsevier B.V. All rights reserved. MSC: 53C20; 53C42 PACS: 02.40.H, M; 02.40.K $J G P$ SC: Riemannian geometry

Keywords: Rigidity; Hypersurfaces; Sphere

1. Introduction

Let M^{n} be an n-dimensional closed hypersurface in a unit sphere $S^{n+1}(1)$ of dimension $n+1$ and denote by S the squared norm of the second fundamental form of M^{n}. Many metric and topological rigidity theorems about M^{n} have been obtained. Simons [19], Chern

[^0]et al. [10] and Lawson [11] proved that if M^{n} is minimal and if $S \leq n$ then M^{n} is either totally geodesic or a Clifford minimal hypersurface. Further results about rigidity of minimal hypersurfaces in $S^{n+1}(1)$ can be found, e.g., in [15-17], etc. As a natural generalization, the rigidity phenomenon for hypersurfaces in $S^{n+1}(1)$ with constant mean curvature has also been studied. It has been proven by Nomizu and Smyth [13] that if M^{n} has constant mean curvature and non-negative sectional curvature then M^{n} is either totally umbilic or a Riemannian product $S^{k}\left(c_{1}\right) \times S^{n-k}\left(c_{2}\right), 1 \leq k \leq n-1$, where $S^{k}(c)$ denotes the sphere of radius c. Alencar and do Carmo [2] have shown that if M^{n} has constant mean curvature H and if $S \leq n H^{2}+C(H, n)$, where $C(H, n)$ is a constant that depends only on H and n, then M^{n} is either totally umbilic or a Riemannian product $S^{1}\left(\sqrt{1-c^{2}}\right) \times S^{n-1}(c)$ with $c^{2} \leq(n-1 / n)$. On the other hand, some rigidity theorems for hypersurfaces with constant scalar curvature have been proven. It has been shown by Cheng and Yau that if M^{n} has nonnegative sectional curvature and constant scalar curvature $n(n-1) r$ with $r \geq 1$, then M^{n} is isometric to either a totally umbilic hypersurface or a Riemannian product $S^{k}\left(c_{1}\right) \times$ $S^{n-k}\left(c_{2}\right), 1 \leq k \leq n-1$ [9]. Li [12] proved that if M^{n} has constant scalar curvature $n(n-1) r$ with $r \geq 1$ and if $S \leq(n-1)(n(r-1)+2) /(n-2)+(n-2) /(n(r-1)+2)$, then M^{n} is isometric to either a totally umbilic hypersurface or the Riemannian product $S^{1}\left(\sqrt{1-c^{2}}\right) \times S^{n-1}(c)$ with $c^{2} \leq(n-2) /(n r)$. Recently, Alencar et al. [3] obtained a gap theorem for closed hypersurfaces with constant scalar curvature $n(n-1)$ in a unit sphere.

In this paper, we prove a rigidity theorem for the Riemannian product $S^{1}\left(\sqrt{1-c^{2}}\right) \times$ $S^{n-1}(c)$ with $c^{2} \leq(n-1 / n)$ without the constancy condition on the mean curvature or the scalar curvature. Namely, we have the following theorem.

Theorem 1.1. Let M^{n} be an n-dimensional closed hypersurface in $S^{n+1}(1)$. Denote by S and H the squared norm of the second fundamental form and the mean curvature of M^{n}, respectively. Assume that the fundamental group $\pi_{1}\left(M^{n}\right)$ of M^{n} is infinite and that $S \leq S(n, H)$, where

$$
\begin{equation*}
S(n, H)=n+\frac{n^{3} H^{2}}{2(n-1)}-\frac{n(n-2)|H|}{2(n-1)} \sqrt{n^{2} H^{2}+4(n-1)} . \tag{1.1}
\end{equation*}
$$

Then S is constant, $S=S(n, H)$ and M is isometric to a Riemannian product $S^{1}\left(\sqrt{1-c^{2}}\right) \times$ $S^{n-1}(c)$ with $c^{2} \leq(n-1) / n$.

Montiel and Ros [14] have proven that an embedded closed hypersurface in a half-sphere with constant r-mean curvature for some $r \in\{1, \ldots, n\}$, is a totally umbilical hypersphere. In the second part of this paper, we give another characterization for the totally umbilical hypersphere.

Theorem 1.2. Let M^{n} be an n-dimensional closed orientable hypersurface in $S^{n+1}(1)$. Assume that the squared norm S of the second fundamental form of M^{n} is constant and that one of the following conditions holds:
(a) The mean curvature H of M^{n} satisfies $H^{2} \geq\left\{(n-1) / n^{2}\right\} S$ on M^{n}.
(b) The Ricci curvatures of M^{n} are bounded from below by $n-1$.

Then M^{n} is a totally umbilical hypersphere.

2. Preliminaries

Let M^{n} be an n-dimensional Riemannian manifold. We choose a local frame of orthonormal vector fields $\left\{e_{1}, \ldots, e_{n}\right\}$ on M^{n} and let $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ be the dual coframe. The connection forms $\left\{\omega_{i j}\right\}$ of M^{n} are characterized by the structure equations:

$$
\begin{align*}
\mathrm{d} \omega_{i} & =\sum_{j} \omega_{i j} \wedge \omega_{j}, \omega_{i j}+\omega_{j i}=0 \tag{2.1}\\
\mathrm{~d} \omega_{i j} & =\sum_{k} \omega_{i k} \wedge \omega_{k j}-\frac{1}{2} \sum_{k, l} R_{i j k l} \omega_{k} \wedge \omega_{l} \tag{2.2}
\end{align*}
$$

where $R_{i j k l}$ are the components of the curvature tensor of M^{n}.
For any C^{2}-function f defined on M^{n}, we define its gradient and Hessian by the following formulas

$$
\begin{align*}
& \mathrm{d} f=\sum_{i} f_{i} \omega_{i}, \tag{2.3}\\
& \sum_{j} f_{i j} \omega_{j}=\mathrm{d} f_{i}+\sum_{j} f_{j} \omega_{j i} . \tag{2.4}
\end{align*}
$$

The Laplacian of f is given by $\Delta f=\sum_{i} f_{i i}$. Let $\phi=\sum_{i, j} \phi_{i j} \omega_{i} \otimes \omega_{j}$ be a symmetric tensor defined on M^{n}. The covariant derivative of ϕ is defined by

$$
\begin{equation*}
\sum_{k} \phi_{i j k} \omega_{k}=\mathrm{d} \phi_{i j}+\sum_{k} \phi_{k j} \omega_{k i}+\sum_{k} \phi_{i k} \omega_{k j} \tag{2.5}
\end{equation*}
$$

Let $|\phi|^{2}=\sum_{i, j} \phi_{i j}^{2}$ and $\operatorname{tr} \phi=\sum_{i} \phi_{i i}$. Choose a frame field $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ so that $\phi_{i j}=\lambda_{i} \delta_{i j}$. If ϕ satisfies the "Codazzi equation"

$$
\phi_{i j k}=\phi_{i k j}
$$

then we have [9]

$$
\begin{equation*}
\frac{1}{2} \Delta|\phi|^{2}=\sum_{i, j, k} \phi_{i j k}^{2}+\sum_{i} \lambda_{i}(\operatorname{tr} \phi)_{i i}+\frac{1}{2} \sum_{i, j} R_{i j i j}\left(\lambda_{i}-\lambda_{j}\right)^{2} . \tag{2.6}
\end{equation*}
$$

The Weyl curvature tensor $W=\left(W_{i j k l}\right)$ of M^{n} is defined by

$$
\begin{align*}
W_{i j k l}= & R_{i j k l}-\frac{1}{n-2}\left(R_{i k} \delta_{j l}-R_{i l} \delta_{j k}+R_{j l} \delta_{i k}-R_{j k} \delta_{i l}\right) \\
& +\frac{R}{(n-1)(n-2)}\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right), \tag{2.7}
\end{align*}
$$

where $R_{i j}$ and R are the components of Ricci curvature tensor and the scalar curvature of M^{n}, respectively. The Beck tensor $B=\left(B_{i j k}\right)$ of M^{n} is given by

$$
\begin{equation*}
B_{i j k}=\frac{1}{n-2}\left(R_{i j k}-R_{i k j}\right)-\frac{1}{2(n-1)(n-2)}\left(\delta_{i j} R_{k}-\delta_{i k} R_{j}\right) \tag{2.8}
\end{equation*}
$$

where $R_{i j k}$ are the components of the covariant derivative of the Ricci curvature tensor of M^{n} and $R_{k}=e_{k} R$.

The following fact is needed in the proof of Theorem 1.1.
Lemma 2.1. [1] If the Ricci curvature of a compact Riemannina manifold is non-negative and positive at a point, then the manifold carries a metric of positive Ricci curvature.
M^{n} is said to be locally conformally flat if, for each $x \in M^{n}$, there exists a conformal diffeomorphism of a neighborhood of x onto an open set of the Euclidean n-space R^{n}. When $n \geq 4, M^{n}$ is locally conformally flat if and only if $W_{i j k l}=0$, and that $B_{i j k l}=0$ on M^{n} in this case. When $n=3$, we always have $W_{i j k l}=0$ on M^{3} and M^{3} is a locally conformally flat Riemannian manifold if and only if $B_{i j k}=0$. Thus, if M^{n} is a locally conformally flat Riemannian manifold, then

$$
\begin{equation*}
R_{i j k l}=\frac{1}{n-2}\left(R_{i k} \delta_{j l}-R_{i l} \delta_{j k}+R_{j l} \delta_{i k}-R_{j k} \delta_{i l}\right)-\frac{R}{(n-1)(n-2)}\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right) \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{i j k}-\frac{1}{2(n-1)} \delta_{i j} R_{k}=R_{i k j}-\frac{1}{2(n-1)} \delta_{i k} R_{j} \tag{2.10}
\end{equation*}
$$

Let M^{n} be a hypersurface in a unit $(n+1)$-dimensional sphere $S^{n+1}(1)$ and denote by $h=\sum_{i, j} h_{i j} \omega_{i} \otimes \omega_{j}$ the second fundamental form of M^{n}. The squared norm S of h and the mean curvature H of M^{n} are given by

$$
S=\sum_{i, j} h_{i j}^{2}, \quad n H=\sum_{i} h_{i i}
$$

respectively. The Gauss equation of M^{n} can be written as

$$
\begin{equation*}
R_{i j k l}=\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}+\left(h_{i k} h_{j l}-h_{i l} h_{j k}\right) \tag{2.11}
\end{equation*}
$$

The Ricci tensor and the scalar curvature R of M^{n} are then given by

$$
\begin{align*}
& R_{i j}=(n-1) \delta_{i j}+n H h_{i j}-\sum_{k} h_{i k} h_{k j}, \tag{2.12}\\
& R=n(n-1)+n^{2} H^{2}-S, \tag{2.13}
\end{align*}
$$

respectively. The covariant derivative $h_{i j k}$ of h satisfies $h_{i j k}=h_{i k j}$. The eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of $\left(h_{i j}\right)$ are the principal curvatures of M^{n}.

3. Proofs of the results

Proof of Theorem 1.1. Assume that $\left\{e_{1}, \ldots, e_{n}\right\}$ diagonalizes the second fundamental form of M^{n} so that $\sum_{i, j} h_{i j} \omega_{i} \otimes \omega_{j}=\sum_{i} \lambda_{i} \omega_{i} \otimes \omega_{i}$. In this case, we have

$$
\begin{align*}
& R_{i j k l}=\left(1+\lambda_{i} \lambda_{j}\right)\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right) \tag{3.1}\\
& R_{i j}=0, i \neq j, \tag{3.2}
\end{align*}
$$

and

$$
\begin{equation*}
R_{i i}=n-1+n H \lambda_{i}-\lambda_{i}^{2}, i=1, \ldots, n \tag{3.3}
\end{equation*}
$$

For any fixed $j \in\{1, \ldots, n\}$, since

$$
\left(n H-\lambda_{j}\right)^{2}=\left(\sum_{j \neq k} \lambda_{k}\right)^{2} \leq(n-1) \sum_{k \neq j} \lambda_{k}^{2}=(n-1)\left(S-\lambda_{j}^{2}\right)
$$

we have

$$
\begin{equation*}
n^{2} H^{2}-(n-1) S+n \lambda_{j}^{2}-2 n H \lambda_{j} \leq 0 \tag{3.4}
\end{equation*}
$$

It is easy to see from

$$
\sum_{i}\left(\lambda_{i}-H\right)=0, \sum_{i}\left(\lambda_{i}-H\right)^{2}=S-n H^{2}
$$

that

$$
\left(\lambda_{j}-H\right)^{2} \leq \frac{n-1}{n}\left(S-n H^{2}\right),
$$

which, combining with (3.4), implies that

$$
\begin{align*}
0 & \geq n\left(\lambda_{j}^{2}-n H \lambda_{j}\right)+(n-2) n\left(\lambda_{j}-H\right) H+2(n-1) n H^{2}-(n-1) S \\
& \left.\geq n\left(\lambda_{j}^{2}-n H \lambda_{j}\right)-(n-2) n|H| \sqrt{\frac{n-1}{n}\left(S-n H^{2}\right.}\right)+2(n-1) n H^{2}-(n-1) S \tag{3.5}
\end{align*}
$$

It then follows from (3.3) that

$$
\begin{aligned}
R_{j j} & \geq(n-1)-(n-2)|H| \sqrt{\frac{n-1}{n}\left(S-n H^{2}\right)}+2(n-1) H^{2}-\frac{(n-1)}{n} S \\
& =\frac{n-1}{n}\left(n+2 n H^{2}-S-(n-2)|H| \cdot \sqrt{\frac{n}{n-1}} \cdot \sqrt{S-n H^{2}}\right) \\
& =\frac{n-1}{n}\left(\sqrt{S-n H^{2}}+\frac{1}{2} \sqrt{\frac{n}{n-1}}\left((n-2)|H|+\sqrt{n^{2} H^{2}+4(n-1)}\right)\right)
\end{aligned}
$$

$$
\begin{equation*}
\times\left(-\sqrt{S-n H^{2}}+\frac{1}{2} \sqrt{\frac{n}{n-1}}\left(-(n-2)|H|+\sqrt{n^{2} H^{2}+4(n-1)}\right)\right) . \tag{3.6}
\end{equation*}
$$

Observe that our condition $S \leq S(n, H)$ is equivalent to

$$
S-n H^{2} \leq\left(\frac{1}{2} \sqrt{\frac{n}{n-1}}\left(-(n-2)|H|+\sqrt{n^{2} H^{2}+4(n-1)}\right)\right)^{2}
$$

that is

$$
-\sqrt{S-n H^{2}}+\frac{1}{2} \sqrt{\frac{n}{n-1}}\left(-(n-2)|H|+\sqrt{n^{2} H^{2}+4(n-1)}\right) \geq 0
$$

Thus

$$
R_{j j} \geq 0, \forall j
$$

which, combining with (3.2), implies that M^{n} has non-negative Ricci curvature. Since our M^{n} has infinite fundamental group, we conclude from Bonnet-Myer's theorem [7] and Lemma 2.1 that $\forall p \in M^{n}$, there exists a unit vector $u \in T_{p} M^{n}$, such that the Ricci curvature Ric of $M^{n} \operatorname{satisfies} \operatorname{Ric}(u, u)=0$. Note that Ric attains its maximum and minimum in the principal directions. We can assume without loss of generality that at any fixed point $x \in M^{n}, R_{n n}=0$. Thus, when $n=j$, at the point x, the inequality (3.5) should be an equality and $S(x)=S(n, H)(x)$, which in turn implies that when $n=j$, the above inequalities should take equality sign at x. Consequently, we know that $\lambda_{1}(x)=\cdots=$ $\lambda_{n-1}(x)$. Since $x \in M^{n}$ is arbitrary, one then deduces that our M^{n} has at most two distinct principal curvatures and, when M^{n} has exactly two distinct principal curvatures, one of these two distinct principal curvatures should be simple. Let us assume that $\lambda_{1}=\cdots=\lambda_{n-1}=\lambda$ and $\lambda_{n}=\mu$ on M^{n}. Since $R_{i i} \geq 0$ and one of $R_{11}, \ldots, R_{n n}$ is zero, we deduce from (3.3) that $1+\lambda \mu=0$. Therefore, we conclude that M^{n} has exactly two distinct principal curvatures one of which is simple and $S=S(n, H)$ holds on M. We want to show that λ and μ are constant functions on M. Notice that our M^{n} is a closed manifold with non-negative Ricci curvature. It is well-known that [18, p. 220] the Riemannian universal covering space \tilde{M}^{n} of M^{n} can be decomposed as $\bar{M}^{n-s} \times R^{s}$ for some $s \in\{0,1, \ldots, n\}$, where \bar{M}^{n-s} is a closed simply connected $(n-s)$-dimensional Riemannina manifold with non-negative Ricci curvature and R^{s} is the s-dimensional Euclidean space with its standard flat metric. The infinity of $\pi_{1}\left(M^{n}\right)$ implies that $\bar{M}^{n-s} \times R^{s}$ is non-compact and so we have $s \geq 1$. Since $\lambda_{1}=\cdots=\lambda_{n-1}=\lambda, \lambda_{n}=\mu$ and $1+\lambda \mu=0$ on M^{n}, we know from (3.1) that if $u=\sum_{i=1}^{n} a_{i} e_{i}, v=\sum_{j=1}^{n} b_{j} e_{j} \in T_{p} M^{n}$ with $|u|=|v|=1,\langle u, v\rangle=0$, then the sectional curvature $K(u \wedge v)$ of the plane spanned by u and v is given by

$$
\begin{align*}
K(u \wedge v) & =\sum_{i, j, k, l} a_{i} b_{j} a_{k} b_{l} R_{i j k l}=\sum_{i, j, k, l} a_{i} b_{j} a_{k} b_{l}\left(1+\lambda_{i} \lambda_{j}\right)\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right) \\
& =1+\left(\sum_{i} \lambda_{i} a_{i}^{2}\right)\left(\sum_{j} \lambda_{j} b_{j}^{2}\right)-\left(\sum_{i} \lambda_{i} a_{i} b_{i}\right)^{2} \\
& =1+\left(\lambda\left(1-a_{n}^{2}\right)+\mu a_{n}^{2}\right)\left(\lambda\left(1-b_{n}^{2}\right)+\mu b_{n}^{2}\right)-\left(\lambda\left(-a_{n} b_{n}\right)+\mu a_{n} b_{n}\right)^{2} \\
& =\left(1+\lambda^{2}\right)\left(1-a_{n}^{2}-b_{n}^{2}\right) . \tag{3.7}
\end{align*}
$$

Lemma 3.1. A vector $u \in T_{p} M^{n}$ with $|u|=1$ satisfies the following condition
$(*)$ if $v \in T_{p} M^{n}$ with $\langle u, v\rangle=0,|v|=1$, then $K(u \wedge v)=0$,
if and only if $u= \pm e_{n}(p)$.
Proof of Lemma 3.1. If $u= \pm e_{n}(p)$ and v satisfies $|v|=1,\langle u, v\rangle=0$, then we can write

$$
v=\sum_{i=1}^{n-1} a_{i} e_{i}(p), \sum_{i=1}^{n-1} a_{i}^{2}=1
$$

Thus

$$
\begin{align*}
K(u \wedge v) & =\sum_{i, j} a_{i} a_{j} R_{n i n j}=\sum_{i, j} a_{i} a_{j}\left(1+\lambda_{n} \lambda_{i}\right)\left(\delta_{n n} \delta_{i j}-\delta_{n i} \delta_{n j}\right) \\
& =\sum_{i}\left(1+\mu \lambda_{i}\right) a_{i}^{2}-a_{n}^{2}\left(1+\mu^{2}\right)=0 . \tag{3.8}
\end{align*}
$$

On the other hand, if $(*)$ is satisfied and suppose by contradiction that

$$
\begin{equation*}
u=a e_{n}(p)+w, \tag{3.9}
\end{equation*}
$$

where $\left\langle w, e_{n}(p)\right\rangle=0, w \neq 0$. Let $w=\sum_{i=1}^{n-1} c_{i} e_{i}(p)$ and take a vector $z=\sum_{i=1}^{n-1} d_{i} e_{i}(p) \in$ $T_{p} M^{n}$ satisfying $|z|=1,\langle z, w\rangle=0$. Then $\langle z, u\rangle=0$ and so we have from (3.7) that

$$
K(u \wedge z)=\left(1+\lambda^{2}\right)\left(1-a^{2}\right)=\left(1+\lambda^{2}\right)|w|^{2}>0
$$

which contradicts to $(*)$. Thus u is parallel to $e_{n}(p)$, since $|u|=1$, we know that $u= \pm e_{n}(p)$. Lemma 3.1 is proved.

Let us go on the proof of Theorem 1.1. Since M and $\bar{M}^{n-s} \times R^{s}$ are locally isometric, it follows from Lemma 3.1 that $s=1$. We claim that \bar{M}^{n-1} has constant sectional curvature and so is isometric to a Euclidean $(n-1)$-sphere. In order to see this, let us assume first that $n \geq 4$. Let $\pi: \bar{M}^{n-1} \times R \rightarrow M$ be the natural projection; then π is a local isometry. For any $x \in \bar{M}^{n-1}$, take an orthonormal base $\left\{f_{1}, \ldots, f_{n-1}\right\}$ of $T_{x} \bar{M}^{n-1}$. Since $T_{(x, 0)}\left(\bar{M}^{n-1} \times R\right)=T_{x} \bar{M}^{n-1} \times T_{0} R$, we know that $\left\{\left(f_{1}, 0\right), \ldots,\left(f_{n-1}, 0\right),(\mathbf{0}, 1)\right\}$
is an orthonormal base of $T_{(x, 0)}\left(\bar{M}^{n-1} \times R\right)$, where $\mathbf{0}$ is the zero-vector of $T_{x} \bar{M}^{n-1}$. Observe that for any $v \in T_{(x, 0)}\left(\bar{M}^{n-1} \times R\right)$ with $\langle v,(\mathbf{0}, 1)\rangle=0,|v|=1$, it holds $\tilde{K}((\mathbf{0}, 1) \wedge v)=0$, where \tilde{K} denotes the sectional curvature of $\bar{M}^{n-1} \times R$. It follows that $K\left(\mathrm{~d} \pi_{(x, 0)}((\mathbf{0}, 1)) \wedge z\right)=0, \forall z \in T_{\pi(x, 0)} M^{n}$ with $|z|=1$ and $\left.\left\langle\mathrm{d} \pi_{(x, 0)}(\mathbf{0}, 1)\right), z\right\rangle=0$. Thus we know from Lemma 3.1 that $\mathrm{d} \pi_{(x, 0)}((\mathbf{0}, 1))= \pm e_{n}(y)$ and so for any $j=1, \ldots, n-1$, $\mathrm{d} \pi_{(x, 0)}\left(\left(f_{j}, 0\right)\right) \in \operatorname{span}\left\{e_{1}(y), \ldots, e_{n-1}(y)\right\}$, where $y=\pi(x, 0)$. Hence, $\tilde{K}\left(\left(f_{i}, 0\right) \wedge\right.$ $\left.\left(f_{j}, 0\right)\right)=K\left(\mathrm{~d} \pi_{(x, 0)}\left(\left(f_{i}, 0\right)\right) \wedge \mathrm{d} \pi_{(x, 0)}\left(\left(f_{j}, 0\right)\right)\right)=1+\lambda^{2}(y), \quad i \neq j \in\{1, \ldots, n-1\}$, which shows that for any $x \in \bar{M}^{n-1}$ and any two-dimensional plane $P \subset T_{x} \bar{M}^{n-1}$, the sectional curvature $\bar{K}(P)$ of \bar{M}^{n-1} on P must satisfy $\bar{K}(P)=\tilde{K}(P)=g(x)>0$, where $g(x)=1+\lambda^{2}(\pi(x, 0))$ is a function on \bar{M}^{n-1}. Thus, since $\operatorname{dim}\left(\bar{M}^{n-1}\right) \geq 3$, we know from the well-known Schur Lemma [4, p. 106] that \bar{M}^{n-1} has constant sectional curvature.

Consider now the case that $n=3$. Let us first show that (2.10) is satisfied and so M^{3} is a locally conformally flat manifold. In fact, since $n=3$, we get by taking the covariant derivatives of (2.12) that

$$
\begin{equation*}
R_{i j k}=3 H_{k} h_{i j}+3 H h_{i j k}-\sum_{l}\left(h_{i l k} h_{l j}+h_{i l} h_{l j k}\right) . \tag{3.10}
\end{equation*}
$$

Also, one has from (2.13) that

$$
\begin{equation*}
R_{k}=18 H H_{k}-S_{k} \tag{3.11}
\end{equation*}
$$

Hence

$$
\begin{aligned}
B_{i j k}= & R_{i j k}-R_{i k j}-\frac{1}{4}\left(\delta_{i j} R_{k}-\delta_{i k} R_{j}\right) \\
= & 3 H_{k} h_{i j}-3 H_{j} h_{i k}+\sum_{l}\left(h_{i l j} h_{l k}-h_{i l k} h_{l j}\right) \\
& -\frac{1}{4}\left(\delta_{i j}\left(18 H H_{k}-S_{k}\right)-\delta_{i k}\left(18 H H_{j}-S_{j}\right)\right) .
\end{aligned}
$$

From $h_{i j}=\lambda_{i} \delta_{i j}$, we have

$$
S_{k}=2 \sum_{l, m} h_{l m} h_{l m k}=2 \sum_{l} \lambda_{l} h_{l l k}
$$

Thus

$$
\begin{align*}
B_{i j k} & =3 H_{k}\left(\lambda_{i}-\frac{3}{2} H\right) \delta_{i j}-3 H_{j}\left(\lambda_{i}-\frac{3}{2} H\right) \delta_{i k}+h_{i k j}\left(\lambda_{k}-\lambda_{j}\right)+\frac{1}{4}\left(\delta_{i j} S_{k}-\delta_{i k} S_{j}\right) \\
& =3\left(H_{k} \delta_{i j}-H_{j} \delta_{i k}\right)\left(\lambda_{i}-\frac{3}{2} H\right)+h_{i k j}\left(\lambda_{k}-\lambda_{j}\right)+\frac{1}{2} \sum_{l}\left(\delta_{i j} h_{l l k}-\delta_{i k} h_{l l j}\right) \lambda_{l} \tag{3.12}
\end{align*}
$$

Taking $h_{l m}=\lambda_{l} \delta_{l m}$ in the equality

$$
\begin{equation*}
\mathrm{d} h_{i j}+\sum_{l}\left(h_{l j} \omega_{l i}+h_{i l} \omega_{l j}\right)=\sum_{l} h_{i j l} \omega_{l}, \tag{3.13}
\end{equation*}
$$

one easily gets

$$
\begin{equation*}
h_{i j k}=\delta_{i j} e_{k} \lambda_{i}+\left(\lambda_{i}-\lambda_{j}\right) \omega_{i j}\left(e_{k}\right) \tag{3.14}
\end{equation*}
$$

and so we have

$$
\begin{equation*}
h_{i i k}=e_{k} \lambda_{i} . \tag{3.15}
\end{equation*}
$$

Since $h_{i j k}=h_{i k j}$, we know from (3.14) that if i, j, k are all distinct, then

$$
\begin{equation*}
\left(\lambda_{i}-\lambda_{j}\right) \omega_{i j}\left(e_{k}\right)=\left(\lambda_{i}-\lambda_{k}\right) \omega_{i k}\left(e_{j}\right) \tag{3.16}
\end{equation*}
$$

Since $\lambda_{1}=\lambda_{2}=\lambda, \lambda_{3}=\mu$, we conclude that when i, j, k are all distinct

$$
\begin{equation*}
B_{i j k}=\left(\lambda_{k}-\lambda_{j}\right) h_{i k j}=\left(\lambda_{k}-\lambda_{j}\right)\left(\lambda_{i}-\lambda_{k}\right) \omega_{i k}\left(e_{j}\right)=\left(\lambda_{k}-\lambda_{j}\right)\left(\lambda_{i}-\lambda_{j}\right) \omega_{i j}\left(e_{k}\right)=0 \tag{3.17}
\end{equation*}
$$

It is trivial to see from (3.12) that $B_{i i i}=0$. Let A be the Weingarten operator defined by the second fundamental form, that is, for any $p \in M$ and all $X, Y \in T_{p} M, A: T_{p} M \rightarrow T_{p} M$, $\langle A X, Y\rangle=h(X, Y)$. Set

$$
\mathcal{D}_{p}(\lambda)=\left\{X \in T_{p} M: A X=\lambda_{p} X\right\}
$$

and let $\mathcal{D}(\lambda)$ be the assignment of $\mathcal{D}_{p}(\lambda)$ to each point $p \in M$. Since the multiplicity of the principal curvature λ is greater than one, it follows from [15] that $\mathcal{D}(\lambda)$ is a completely integrable distribution on M and that λ is constant on each leaf of $\mathcal{D}(\lambda)$. Thus we have $e_{1} \lambda=e_{2} \lambda=0$. If $i \neq k$, we have from (3.12) and (3.15) that

$$
\begin{align*}
B_{i i k} & =3 H_{k}\left(\lambda_{i}-\frac{3}{2} H\right)+h_{i i k}\left(\lambda_{k}-\lambda_{i}\right)+\frac{1}{2} \sum_{l} h_{l l k} \lambda_{l} \\
& =\left(2 e_{k} \lambda+e_{k} \mu\right)\left(\lambda_{i}-\lambda-\frac{1}{2} \mu\right)+\left(e_{k} \lambda_{i}\right)\left(\lambda_{k}-\lambda_{i}\right)+\frac{1}{2} \sum_{l} h_{l l k} \lambda_{l} . \tag{3.18}
\end{align*}
$$

Thus

$$
\begin{aligned}
& B_{113}=B_{223}=\left(2 e_{3} \lambda+e_{3} \mu\right)\left(-\frac{1}{2} \mu\right)+\left(e_{3} \lambda\right)(\mu-\lambda)+\left(e_{3} \lambda\right) \lambda+\frac{1}{2}\left(e_{3} \mu\right) \mu=0 \\
& B_{331}=e_{1} \mu\left(\frac{\mu}{2}-\lambda\right)+\left(e_{1} \mu\right)(\lambda-\mu)+\frac{1}{2}\left(e_{1} \mu\right) \mu=0 .
\end{aligned}
$$

Similarly, we have

$$
B_{332}=0, B_{i k k}=B_{i k i}=0, i \neq k
$$

Therefore, M^{3} is locally conformally flat and so \tilde{M}^{3} is also locally conformally flat. Recall that $\tilde{M}^{3}=\bar{M}^{2} \times R$, where \bar{M}^{2} has non-negative Gaussian curvature κ. We shall use the same notations $R_{i j k l}$ and $R_{i j}$, etc. to denote the components of the curvature tensor and the Ricci curvature tensor, etc. of \tilde{M}^{3}, respectively. Take an orthonormal local frame $\left\{v_{1}, v_{2}, v_{3}\right\}$ of \tilde{M}^{3} such that v_{1} and v_{2} are tangent to \bar{M}^{2}. Since \tilde{M}^{3} is a product, one can see easily that

$$
\begin{aligned}
& R_{11}=R_{22}=R_{1212}+R_{1313}=R_{1212}=\kappa \\
& R_{12}=R_{13}=R_{23}=R_{33}=0, \quad R=2 \kappa
\end{aligned}
$$

Taking $i=j=1, k=2$ in the equality (2.10), we get

$$
R_{112}-R_{121}=\frac{1}{4} R_{2}
$$

From the definition, we have

$$
\begin{aligned}
& R_{121}=\left(\mathrm{d} R_{12}\right)\left(v_{1}\right)+\sum_{l=1}^{3} R_{l 2} \omega_{l 1}\left(v_{1}\right)+\sum_{l=1}^{3} R_{1 l} \omega_{l 2}\left(v_{1}\right)=0 \\
& R_{112}=\left(\mathrm{d} R_{11}\right)\left(v_{2}\right)+\sum_{l=1}^{3} R_{l 1} \omega_{l 1}\left(v_{2}\right)+\sum_{l=1}^{3} R_{l 2} \omega_{l 2}\left(v_{2}\right)=v_{2} R_{11}=v_{2} \kappa .
\end{aligned}
$$

Therefore,

$$
v_{2} \kappa=\frac{1}{2} v_{2} \kappa
$$

and so

$$
v_{2} \kappa=0
$$

Similarly, we have $v_{1} \kappa=0$. Thus κ is a constant function. Hence, for any $n \geq 3, \bar{M}^{n-1}$ is a Euclidean sphere. Consequently our M^{n} has constant scalar curvature. But the scalar curvature of M^{n} is given by

$$
r=\sum_{i} R_{i i}=(n-1)(n-2)\left(1+\lambda^{2}\right) .
$$

Hence λ is a constant and so $\mu=-1 / \lambda$ is also constant. That is, M^{n} is an isoparametric hypersurface in $S^{n+1}(1)$ with two distinct principal curvatures one of which is simple. From the work of Cartan [6], we conclude that $M^{n}=S^{1}\left(\sqrt{1-c^{2}}\right) \times S^{n-1}(c)$ for some $c \in(0,1)$. Since the principal curvatures of $S^{1}\left(\sqrt{1-c^{2}}\right) \times S^{n-1}(c)$ are $\lambda_{1}=\cdots=\lambda_{n-1}=$
$\sqrt{1 /\left(c^{2}-1\right)}, \lambda_{n}=-\sqrt{c^{2} /\left(1-c^{2}\right)}$ and $S=S(n, H)$, we know that $c^{2} \leq(n-1 / n)$. This completes the proof of Theorem 1.1.

Before proving Theorem 1.2, we recall an algebraic fact.
Lemma 3.2. [8] Let x_{1}, \ldots, x_{n} be $n(\geq) 2$ real numbers satisfying the inequality $\left(\sum_{i} x_{i}\right)^{2} \geq$ $(n-1) \sum_{i} x_{i}^{2}$. Then for any distinct $i, j, 1 \leq i<j \leq n$, we have $x_{i} x_{j} \geq 0$.

Proof of Theorem 1.2. Let $h=\sum_{i, j=1}^{n} h_{i j} \omega_{i} \otimes \omega_{j}$ be the second fundamental form of M^{n} and assume that $h_{i j}=\lambda_{i} \delta_{i j}$, where $\lambda_{i}, i=1, \ldots, n$ are the principal curvatures of M^{n}. It follows from the Gauss equation that for any $i \neq j$

$$
\begin{equation*}
R_{i j i j}=1+\lambda_{i} \lambda_{j}, \tag{3.19}
\end{equation*}
$$

Let $|h|^{2}=\sum_{i, j=1}^{n} h_{i j}^{2}=\sum_{i=1} \lambda_{i}^{2}$ and $\operatorname{tr} h=\sum_{i=1}^{n} \lambda_{i}$. Since $|h|^{2}$ is constant, we have from (2.6) that

$$
\begin{equation*}
0=\sum_{i, j, k=1}^{n} h_{i j k}^{2}+\sum_{i=1}^{n} \lambda_{i}(\operatorname{tr} h)_{i i}+\frac{1}{2} \sum_{i, j=1}^{n} R_{i j i j}\left(\lambda_{i}-\lambda_{j}\right)^{2} . \tag{3.20}
\end{equation*}
$$

Consider first the case that $H^{2} \geq\left\{(n-1) / n^{2}\right\} S$. In this case, we know from Lemma 2.1 that $\lambda_{i} \lambda_{j} \geq 0, \forall i \neq j$. Thus one finds from (3.19) that the sectional curvatures of M^{n} are bounded from below by 1 . It then follows from Theorem 1.1 in [5] that either M^{n} is totally geodesic or M^{n} is the boundary of a convex body in an open half-sphere, which implies that the second fundamental form of M^{n} is always semi-positive definite if we choose the unit normal vector field of M^{n} properly. Therefore, we can assume that $\lambda_{i} \geq 0$ on M^{n}, $\forall i=1, \ldots, n$.

Take a point $p \in M^{n}$ such that

$$
(\operatorname{tr} h)(p)=\min _{x \in M^{n}}(\operatorname{tr} h)(x) .
$$

Then we have from the maximal principle that

$$
\begin{equation*}
(\operatorname{tr} h)_{i i}(p) \geq 0, i=1, \ldots, n \tag{3.21}
\end{equation*}
$$

which, combining with (3.20), gives

$$
0 \geq \frac{1}{2} \sum_{i, j}\left(\lambda_{i}-\lambda_{j}\right)^{2}(p)
$$

and so

$$
\begin{equation*}
\lambda_{1}(p)=\cdots=\lambda_{n}(p) \tag{3.22}
\end{equation*}
$$

Now for any $q \in M^{n}$, we have from $S(q)=S(p)$ and (3.22) that

$$
\begin{align*}
\sum_{i, j}\left(\lambda_{i}(q)-\lambda_{j}(q)\right)^{2} & =2 n \sum_{i}\left(\lambda_{i}(q)\right)^{2}-2\left(\sum_{i}^{n} \lambda_{i}(q)\right)^{2} \\
& \leq 2 n \sum_{i}^{n}\left(\lambda_{i}(p)\right)^{2}-2\left(\sum_{i}^{n} \lambda_{i}(p)\right)^{2}=0 . \tag{3.23}
\end{align*}
$$

Thus M^{n} is totally umbilical. Assume now that the Ricci curvature of M^{n} is bounded from below by $n-1$. Then we have from Gauss equation that

$$
\begin{equation*}
\left(\sum_{i=1}^{n} \lambda_{i}\right) \lambda_{j}-\lambda_{j}^{2} \geq 0, j=1, \ldots, n, \text { on } M^{n} . \tag{3.24}
\end{equation*}
$$

Suppose without loss of generality that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. We claim that

$$
\begin{equation*}
\lambda_{i} \lambda_{j} \geq 0, \forall 1 \leq i, j \leq n, \text { on } M^{n}, \tag{3.25}
\end{equation*}
$$

which, combining with the above arguments above, will imply that M^{n} is totally umbilical. Let us verify that for any $p \in M^{n}$, there holds either

$$
\lambda_{i}(p) \geq 0, i=1, \ldots, n,
$$

or

$$
\lambda_{i}(p) \leq 0, i=1, \ldots, n,
$$

and so (3.25) holds. We shall prove this fact by contradiction. Thus suppose that there exists a $q \in M^{n}$ such that

$$
\lambda_{1}(q)>0 \quad \text { and } \quad \lambda_{n}(q)<0 .
$$

If $\sum_{i=1}^{n} \lambda_{i}(q) \geq 0$, then we have

$$
\sum_{i=1}^{n-1} \lambda_{i}(q) \geq-\lambda_{n}(q)>0
$$

Thus

$$
\left(\sum_{i=1}^{n} \lambda_{i}(q)\right) \lambda_{n}(q)-\lambda_{n}^{2}(q)=\left(\sum_{i=1}^{n-1} \lambda_{i}(q)\right) \lambda_{n}(q)<0
$$

which contradicts to (3.24). On the other hand, if $\sum_{i=1}^{n} \lambda_{i}(q)<0$, then

$$
\sum_{i=2}^{n} \lambda_{i}(q)<-\lambda_{1}(q)<0
$$

which gives

$$
\left(\sum_{i=1}^{n} \lambda_{i}(q)\right) \lambda_{1}(q)-\lambda_{1}^{2}(q)=\left(\sum_{i=2}^{n} \lambda_{i}(q)\right) \lambda_{1}(q)<0
$$

contradicting to (3.24) again. This completes the proof of Theorem 1.2.

Acknowledgement

The authors would like to thank the referee for the encouragements and the careful reading of the manuscript.

References

[1] T. Aubin, Some nonlinear problems in Riemannian geometry, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.
[2] H. Alencar, M. do Carmo, Hypersurfaces with constant mean curvature in spheres, Proc. Am. Math. Soc. 120 (1994) 1223-1229.
[3] H. Alencar, M. do Carmo, W. Santos, A gap theorem for hypersurfaces of the sphere with constant scalar curvature one, Comment. Math. Helv. 77 (2002) 549-562.
[4] M. do Carmo, Riemannian Geometry, Birkhäuser, Boston, MA, 1992.
[5] M. do Carmo, F.W. Warner, Rigidity and convexity of hypersurfaces in spheres, J. Diff. Geom. 4 (1970) 133-144.
[6] E. Cartan, Familles de surfaces isoparametriques dans les espaces a curvatura constante, Annali di Mat. 17 (1938) 177-191.
[7] J. Cheeger, D. Ebin, Comparison Theorems in Riemannian Geometry, North-Holland, 1975.
[8] B.Y. Chen, M. Okumura, Scalar curvature, inequalities and submanifolds, Proc. Am. Math. Soc. 38 (1973) 605-608.
[9] S.Y. Cheng, S.T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann. 225 (1977) 195-204.
[10] S.S. Chern, M. do Carmo, S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, in: F. Browder (Ed.), Functional Analysis and Related Fields, Springer-Verlag, Berlin, 1970, pp. 59-75.
[11] B. Lawson, Local rigidity theorems for minimal hypersurfaces, Ann. Math. 89 (1969) 187-197.
[12] H.Z. Li, Hypersurfaces with constant scalar curvature in space forms, Math. Ann. 305 (1996) 665-672.
[13] K. Nomizu, B. Smyth, A formula of Simons' type and hypersurfaces with constant mean curvature, J. Diff. Geom. 3 (1969) 367-377.
[14] S. Montiel, A. Ros, Compact hypersurfaces: the Alexandrov theorem for higher order mean curvatures, Differential Geometry, Pitman Monogr. Surveys Pure Appl. Math., vol. 52, Longman Sci. Tech., Harlow, 1991, pp. 279-296.
[15] T. Otsuki, Minimal hypersurfaces in a Riemannian manifold of constant curvature, Am. J. Math. 92 (1970) 145-173.
[16] C.K. Peng, C.L. Terng, Mimimal hypersurfaces of spheres with constant scalar curvature, Ann. Math. Stud. 103 (1983) 177-198.
[17] C.K. Peng, C.L. Terng, The scalar curvature of minimal hypersurfaces in spheres, Math. Ann. 266 (1983) 105-113.
[18] T. Sakai, Riemannian Geometry, Translated from the 1992 Japanese original by the author, Translations of Mathematical Monographs, vol. 149, American Mathematical Society, Providence, RI, 1996, xiv +358 pp.
[19] J. Simons, Minimal varieties in Riemannian manifolds, Ann. Math. 88 (1968) 62-105.

[^0]: Both authors were partially supported by CNPq.

 * Corresponding author. Tel.: +55 612733356257; fax: +55 612732737.

 E-mail addresses: wang@mat.unb.br (Q. Wang), xia@mat.unb.br (Changyu Xia).

